Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(2): e0298095, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38394123

RESUMO

The PINK1/Parkin pathway of mitophagy has been implicated in the pathogenesis of Parkinson's disease. In prion diseases, a transmissible neurodegenerative disease caused by the misfolded and infectious prion protein (PrPSc), expression of both PINK1 and Parkin are elevated, suggesting that PINK1/Parkin mediated mitophagy may also play a role in prion pathogenesis. Using mice in which expression of either PINK1 (PINK1KO) or Parkin (ParkinKO) has been ablated, we analyzed the potential role of PINK1 and Parkin in prion pathogenesis. Prion infected PINK1KO and ParkinKO mice succumbed to disease more rapidly (153 and 150 days, respectively) than wild-type control C57Bl/6 mice (161 days). Faster incubation times in PINK1KO and ParkinKO mice did not correlate with altered prion pathology in the brain, altered expression of proteins associated with mitochondrial dynamics, or prion-related changes in mitochondrial respiration. However, the expression level of mitochondrial respiration Complex I, a major site for the formation of reactive oxygen species (ROS), was higher in prion infected PINK1KO and ParkinKO mice when compared to prion infected control mice. Our results demonstrate a protective role for PINK1/Parkin mitophagy during prion disease, likely by helping to minimize ROS formation via Complex I, leading to slower prion disease progression.


Assuntos
Doenças Neurodegenerativas , Doenças Priônicas , Príons , Camundongos , Animais , Mitofagia , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Doenças Priônicas/genética
2.
J Bacteriol ; 205(10): e0023223, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37787517

RESUMO

Microbes often respond to environmental cues by adopting collective behaviors-like biofilms or swarming-that benefit the population. During "bioconvection," microbes gather in dense groups and plume downward through fluid environments, driving flow and mixing on the scale of millions of cells. Though bioconvection was observed a century ago, the effects of differing physical and chemical inputs and its potential selective advantages for different species of microbes remain largely unexplored. In Bacillus subtilis, vertical oxygen gradients that originate from air-liquid interfaces create cell-density inversions that drive bioconvection. Here, we develop Escherichia coli as a complementary model for the study of bioconvection. In the context of a still fluid, we found that motile and chemotactic genotypes of both E. coli and B. subtilis bioconvect and show increased growth compared to immotile or non-chemotactic genotypes, whereas in a well-mixed fluid, there is no growth advantage to motility or chemotaxis. We found that fluid depth, cell concentration, and carbon availability affect the emergence and timing of bioconvective patterns. Also, whereas B. subtilis requires oxygen gradients to bioconvect, E. coli deficient in aerotaxis (Δaer) or energy-taxis (Δtsr) still bioconvects, as do cultures that lack an air-liquid interface. Thus, in two distantly related microbes, bioconvection may confer context-dependent growth benefits, and E. coli bioconvection is robustly elicited by multiple types of chemotaxis. These results greatly expand the set of physical and metabolic conditions in which this striking collective behavior can be expected and demonstrate its potential to be a generic force for behavioral selection across ecological contexts. IMPORTANCE Individual microorganisms frequently move in response to gradients in their fluid environment, with corresponding metabolic benefits. At a population level, such movements can create density variations in a fluid that couple to gravity and drive large-scale convection and mixing called bioconvection. In this work, we provide evidence that this collective behavior confers a selective benefit on two distantly related species of bacteria. We develop new methods for quantifying this behavior and show that bioconvection in Escherichia coli is surprisingly robust to changes in cell concentration, fluid depth, interface conditions, metabolic sensing, and carbon availability. These results greatly expand the set of conditions known to elicit this collective behavior and indicate its potential to be a selective pressure across ecological contexts.


Assuntos
Quimiotaxia , Escherichia coli , Humanos , Escherichia coli/genética , Quimiotaxia/fisiologia , Bacillus subtilis/genética , Oxigênio , Carbono
3.
J Biochem ; 174(2): 165-181, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37099550

RESUMO

Accumulation of insoluble aggregates of infectious, partially protease-resistant prion protein (PrPD) generated via the misfolding of protease sensitive prion protein (PrPC) into the same infectious conformer, is a hallmark of prion diseases. Aggregated PrPD is taken up and degraded by cells, a process likely involving changes in aggregate structure that can be monitored by accessibility of the N-terminus of full-length PrPD to cellular proteases. We therefore tracked the protease sensitivity of full-length PrPD before and after cellular uptake for two murine prion strains, 22L and 87V. For both strains, PrPD aggregates were less stable following cellular uptake with increased accessibility of the N-terminus to cellular proteases across most aggregate sizes. However, a limited size range of aggregates was able to better protect the N-termini of full-length PrPD, with the N-terminus of 22L-derived PrPD more protected than that of 87V. Interestingly, changes in aggregate structure were associated with minimal changes to the protease-resistant core of PrPD. Our data show that cells destabilize the aggregate quaternary structure protecting PrPD from proteases in a strain-dependent manner, with structural changes exposing protease sensitive PrPD having little effect on the protease-resistant core, and thus conformation, of aggregated PrPD.


Assuntos
Doenças Priônicas , Príons , Animais , Camundongos , Endopeptidases , Peptídeo Hidrolases/química , Doenças Priônicas/metabolismo , Proteínas Priônicas , Príons/química , Príons/metabolismo , Proteínas PrPSc/química , Proteínas PrPSc/metabolismo
4.
Cell Tissue Res ; 392(1): 269-283, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35107622

RESUMO

The properties of infectious prions and the pathology of the diseases they cause are dependent upon the unique conformation of each prion strain. How the pathology of prion disease correlates with different strains and genetic backgrounds has been investigated via in vivo assays, but how interactions between specific prion strains and cell types contribute to the pathology of prion disease has been dissected more effectively using in vitro cell lines. Observations made through in vivo and in vitro assays have informed each other with regard to not only how genetic variation influences prion properties, but also how infectious prions are taken up by cells, modified by cellular processes and propagated, and the cellular components they rely on for persistent infection. These studies suggest that persistent cellular infection results from a balance between prion propagation and degradation. This balance may be shifted depending upon how different cell lines process infectious prions, potentially altering prion stability, and how fast they can be transported to the lysosome. Thus, in vitro studies have given us a deeper understanding of the interactions between different prions and cell types and how they may influence prion disease phenotypes in vivo.


Assuntos
Doenças Priônicas , Príons , Humanos , Príons/metabolismo , Doenças Priônicas/genética , Doenças Priônicas/metabolismo , Linhagem Celular
5.
Front Mol Biosci ; 9: 915307, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35874607

RESUMO

Protein aggregation, or the uncontrolled self-assembly of partially folded proteins, is an ever-present danger for living organisms. Unimpeded, protein aggregation can result in severe cellular dysfunction and disease. A group of proteins known as molecular chaperones is responsible for dismantling protein aggregates. However, how protein aggregates are recognized and disassembled remains poorly understood. Here we employ a single particle fluorescence technique known as Burst Analysis Spectroscopy (BAS), in combination with two structurally distinct aggregate types grown from the same starting protein, to examine the mechanism of chaperone-mediated protein disaggregation. Using the core bi-chaperone disaggregase system from Escherichia coli as a model, we demonstrate that, in contrast to prevailing models, the overall size of an aggregate particle has, at most, a minor influence on the progression of aggregate disassembly. Rather, we show that changes in internal structure, which have no observable impact on aggregate particle size or molecular chaperone binding, can dramatically limit the ability of the bi-chaperone system to take aggregates apart. In addition, these structural alterations progress with surprising speed, rendering aggregates resistant to disassembly within minutes. Thus, while protein aggregate structure is generally poorly defined and is often obscured by heterogeneous and complex particle distributions, it can have a determinative impact on the ability of cellular quality control systems to process protein aggregates.

6.
PLoS One ; 17(5): e0267720, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35507602

RESUMO

Prion diseases are a group of fatal, transmissible neurodegenerative diseases of mammals. In the brain, axonal loss and neuronal death are prominent in prion infection, but the mechanisms remain poorly understood. Sterile alpha and heat/Armadillo motif 1 (SARM1) is a protein expressed in neurons of the brain that plays a critical role in axonal degeneration. Following damage to axons, it acquires an NADase activity that helps to regulate mitochondrial health by breaking down NAD+, a molecule critical for mitochondrial respiration. SARM1 has been proposed to have a protective effect in prion disease, and we hypothesized that it its role in regulating mitochondrial energetics may be involved. We therefore analyzed mitochondrial respiration in SARM1 knockout mice (SARM1KO) and wild-type mice inoculated either with prions or normal brain homogenate. Pathologically, disease was similar in both strains of mice, suggesting that SARM1 mediated axonal degradation is not the sole mechanism of axonal loss during prion disease. However, mitochondrial respiration was significantly increased and disease incubation time accelerated in prion infected SARM1KO mice when compared to wild-type mice. Increased levels of mitochondrial complexes II and IV and decreased levels of NRF2, a potent regulator of reactive oxygen species, were also apparent in the brains of SARM1KO mice when compared to wild-type mice. Our data suggest that SARM1 slows prion disease progression, likely by regulating mitochondrial respiration, which may help to mitigate oxidative stress via NRF2.


Assuntos
Proteínas do Domínio Armadillo , Príons , Animais , Proteínas do Domínio Armadillo/genética , Proteínas do Domínio Armadillo/metabolismo , Axônios/metabolismo , Proteínas do Citoesqueleto/metabolismo , Mamíferos/metabolismo , Camundongos , Camundongos Knockout , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Príons/metabolismo , Respiração
7.
Biophys J ; 120(11): 2192-2204, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33831389

RESUMO

The formation and disassembly of macromolecular particles is a ubiquitous and essential feature of virtually all living organisms. Additionally, diseases are often associated with the accumulation and propagation of biologically active nanoparticles, like the formation of toxic protein aggregates in protein misfolding diseases and the growth of infectious viral particles. The heterogeneous and dynamic nature of biologically active particles can make them exceedingly challenging to study. The single-particle fluorescence technique known as burst analysis spectroscopy (BAS) was developed to facilitate real-time measurement of macromolecular particle distributions in the submicron range in a minimally perturbing, free-solution environment. Here, we develop a multicolor version of BAS and employ it to examine two problems in macromolecular assembly: 1) the extent of DNA packing heterogeneity in bacteriophage viral particles and 2) growth models of non-native protein aggregates. We show that multicolor BAS provides a powerful and flexible approach to studying hidden properties of important biological particles like viruses and protein aggregates.


Assuntos
Nanopartículas , Proteínas , Tamanho da Partícula , Análise Espectral
8.
Biochemistry ; 60(5): 398-411, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33497187

RESUMO

Prion diseases arise when PrPSc, an aggregated, infectious, and insoluble conformer of the normally soluble mammalian prion protein, PrPC, catalyzes the conversion of PrPC into more PrPSc, which then accumulates in the brain leading to disease. PrPSc is the primary, if not sole, component of the infectious prion. Despite the stability and protease insensitivity of PrPSc aggregates, they can be degraded after cellular uptake. However, how cells disassemble and degrade PrPSc is poorly understood. In this work, we analyzed how the protease sensitivity and size distribution of PrPSc aggregates from two different mouse-adapted prion strains, 22L, that can persistently infect cells and 87V, that cannot, changed during cellular uptake. We show that within the first 4 h following uptake large PrPSc aggregates from both prion strains become less resistant to digestion by proteinase K (PK) through a mechanism that is dependent upon the acidic environment of endocytic vesicles. We further show that during disassembly, PrPSc aggregates from both strains become more resistant to PK digestion through the apparent removal of protease-sensitive PrPSc, with PrPSc from the 87V strain disassembled more readily than PrPSc from the 22L strain. Taken together, our data demonstrate that the sizes and stabilities of PrPSc from different prion strains change during cellular uptake and degradation, thereby potentially impacting the ability of prions to infect cells.


Assuntos
Proteínas PrPSc/química , Proteínas PrPSc/metabolismo , Agregados Proteicos/fisiologia , Animais , Transporte Biológico , Encéfalo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Peptídeo Hidrolases/metabolismo , Proteínas PrPC/metabolismo , Doenças Priônicas/metabolismo , Príons/química , Príons/metabolismo
9.
PLoS One ; 14(7): e0219457, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31291644

RESUMO

Prion protein (PrPC) is a protease-sensitive and soluble cell surface glycoprotein expressed in almost all mammalian cell types. PrPSc, a protease-resistant and insoluble form of PrPC, is the causative agent of prion diseases, fatal and transmissible neurogenerative diseases of mammals. Prion infection is initiated via either ingestion or inoculation of PrPSc or when host PrPC stochastically refolds into PrPSc. In either instance, the early events that occur during prion infection remain poorly understood. We have used transgenic mice expressing mouse PrPC tagged with a unique antibody epitope to monitor the response of host PrPC to prion inoculation. Following intracranial inoculation of either prion-infected or uninfected brain homogenate, we show that host PrPC can accumulate both intra-axonally and within the myelin membrane of axons suggesting that it may play a role in axonal loss following brain injury. Moreover, in response to the inoculation host PrPC exhibits an increased insolubility and protease resistance similar to that of PrPSc, even in the absence of infectious prions. Thus, our results raise the possibility that damage to the brain may be one trigger by which PrPC stochastically refolds into pathogenic PrPSc leading to productive prion infection.


Assuntos
Proteínas PrPC/genética , Proteínas PrPSc/genética , Doenças Priônicas/genética , Proteínas Priônicas/genética , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Epitopos/genética , Epitopos/imunologia , Humanos , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Transgênicos , Bainha de Mielina/genética , Bainha de Mielina/metabolismo , Peptídeo Hidrolases/química , Peptídeo Hidrolases/genética , Proteínas PrPC/química , Proteínas PrPSc/química , Doenças Priônicas/patologia
10.
PLoS One ; 10(3): e0119563, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25799353

RESUMO

Vital cellular processes, from cell growth to synaptic transmission, rely on membrane-bounded carriers and vesicles to transport molecular cargo to and from specific intracellular compartments throughout the cell. Compartment-specific proteins are required for the final step, membrane fission, which releases the transport carrier from the intracellular compartment. The role of fission proteins, especially at intracellular locations and in non-neuronal cells, while informed by the dynamin-1 paradigm, remains to be resolved. In this study, we introduce a highly sensitive approach for the identification and analysis of membrane fission machinery, called burst analysis spectroscopy (BAS). BAS is a single particle, free-solution approach, well suited for quantitative measurements of membrane dynamics. Here, we use BAS to analyze membrane fission induced by the potent, fission-active ENTH domain of epsin. Using this method, we obtained temperature-dependent, time-resolved measurements of liposome size and concentration changes, even at sub-micromolar concentration of the epsin ENTH domain. We also uncovered, at 37°C, fission activity for the full-length epsin protein, supporting the argument that the membrane-fission activity observed with the ENTH domain represents a native function of the full-length epsin protein.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/química , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Membrana Celular/metabolismo , Endocitose/fisiologia , Membranas Intracelulares/metabolismo , Lipossomos/química , Animais , Fluorescência , Interações Hidrofóbicas e Hidrofílicas , Lipossomos/metabolismo , Estrutura Terciária de Proteína , Ratos
11.
J Biol Chem ; 288(43): 30944-55, 2013 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-24022487

RESUMO

A key constraint on the growth of most organisms is the slow and inefficient folding of many essential proteins. To deal with this problem, several diverse families of protein folding machines, known collectively as molecular chaperones, developed early in evolutionary history. The functional role and operational steps of these remarkably complex nanomachines remain subjects of active debate. Here we present evidence that, for the GroEL-GroES chaperonin system, the non-native substrate protein enters the folding cycle on the trans ring of the double-ring GroEL-ATP-GroES complex rather than the ADP-bound complex. The properties of this ATP complex are designed to ensure that non-native substrate protein binds first, followed by ATP and finally GroES. This binding order ensures efficient occupancy of the open GroEL ring and allows for disruption of misfolded structures through two phases of multiaxis unfolding. In this model, repeated cycles of partial unfolding, followed by confinement within the GroEL-GroES chamber, provide the most effective overall mechanism for facilitating the folding of the most stringently dependent GroEL substrate proteins.


Assuntos
Chaperonina 10/química , Chaperonina 60/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Dobramento de Proteína , Rhodospirillum rubrum/enzimologia , Ribulose-Bifosfato Carboxilase/química , Chaperonina 10/genética , Chaperonina 10/metabolismo , Chaperonina 60/genética , Chaperonina 60/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Rhodospirillum rubrum/genética , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...